Teaching Aids

Faculty use charts, models and posters etc, to explain some topics in their
subject which motivates the students to take interest in the subjects. Some of
the charts made were ‘Control Structures in C/C++’°, ‘Class Hierarchy in
Java’ etc. Posters are used to illustrate difficult concepts and recent advances
In the respective subjects and used in the classroom teaching.

Working Models/ Charts/ Monograms etc:

S.No |Chart Description Lab Name Room No.
1 Logic Gates System Design LAB |D-208

2 8085 Instruction Set System Design LAB D-208

3 8086 Instruction Set System Design LAB D-208

4 Full-Subtractor System Design LAB |D-208

5 D-Flip Flop System Design LAB |D-208

6 2 x 4 Decoder System Design LAB D-208

7 Full-Adder System Design LAB |D-208

8 4-Bit parallel Adder System Design LAB |D-208

9 4-to-1 Multiplexer System Design LAB |D-208

10 4-Bit-Register with parallel load System Design LAB |D-208

11 Introduction to “C” programming First Year Lab
12 Model Chart on Instruction Prefetching for Server Lab

Server Workloads

Virtual Labs
https://www.vlab.co.in

Virtual%20Labshttps:/www.vlab.co.in
Virtual%20Labshttps:/www.vlab.co.in
Virtual%20Labshttps:/www.vlab.co.in
Virtual%20Labshttps:/www.vlab.co.in

v G virtual lab for database m« X Virtual Labs * Welcome to Virtual Labs *x Virtual Labs. x Virtual Labs. x | & (226) WhatsApp x 4+ - a *

3 €@ 5% vabcoin * 0O @

Objectives

1. To provide remote-access to simulation-based Labs in various disciplines of Science and Engineering.
2. To enthuse students to conduct experiments by arousing their curiosity. This would help them in leaming basic and advanced concepts through remote experimentation.

3. To provide a complete Learning Management System around the Virtual Labs where the students/ teachers can avall the various toals for leaming, including additional web-

resources, video-lectures, animated demonstrations and seif-evaluation.

Broad Areas of Virtual Labs

&€ Electronics & Communications ¥ Bio gy and Bi ical Engi ing
& Computer Science & Engineering & Civil Engineering

© Electrical Engineering & Physical Sciences

& Mechanical Engineering &) Chemical Sciences

& Chemical Engineering

Participating Institutes -

v G virtual lab for database m- X /o Virtual Labs x i Welcome to Virtual Labs X Virtual Labs. x Virtual Labs X | @ (226) WhatsApp X | + = o X

« C % cse02-iiithvlabs.acin/List%200f%20experiments html * O @
(]Virrual

Computer Science and Engineering

Introduction

Objective

1. Expre
List of experiments
ol Flow

Target Audience

anced Control Flow

Course Alignment

proximation

Feedback

H P Type here to search ? i

v G virtual lab for database m: X % Virtual Labs x ", Welcome to Virtual Labs x & Virtual Labs x A Virtual Labs x ® (226) WhatsApp x + - (=] x

C % cse02-iiithviabs.acin/exp/basic-control-flow/ ayx O @

. f‘js Virtual
= |

Computer Science and Engineering > > Experiments

Aim
Basic Control Flow
Theory
Objective A computer program can be thought of as a sequence of instructions which are followed by a computer to solve a problem. However. the sequence in which they
are written and the sequence in which they are executed may not be the same. If the execution of every program was sequential. it would run exactly the same
Pretest way each time. Hence, to write programs of greater complexity. which can take decisions based on user input or values of variables, we need a decision making
mechanism which can alter the sequential order of execution of statements. The order of execution of statements in a program is called Control Flow (or flow of
Procedure contol
Simulation

An example where we need to alter the sequential flow of control is when we want a set of instructions to be executed in one situation, and an entirely different
Posttest set of instructions in another situation. A real life example of this sort of “decision-making" could be: If the traffic light is green, keep moving: if yellow, then wait; if

red, then stop. In the case of programmming, decision-making essentially means deciding from which statement the execution should be resumed. This decision
References about where the execution should be resumed is made based on the value of a variable or an expression.
Feedback The if construct, for example, excecutes a set of instructions only if a condition is true. A switching construct. on the other hand, allows decision-making based on
the state of a variable or an expression. Its purpose is to allow the value of a variable or an expression to control the flow of program execution via a multiway
branch. Constructs like these can be placed inside another to create more complex flow of control This enclosing of structures into one another is called nesting
These constructs are known as conditionals because they alter the flow of control based on a condition

Apart from this, there is another class of constructs called loops. which can be used to repeat a set of instructions This repetition can be done a fixed number of
times or until some specific condition is met. Just like the conditionals, the loops can also be nested. Loops and conditionals can also be nested inside each other
In this lab, we shall see the working of conditional constructs

L Type here to search

v G vituallab fordatabaseme % | % Virwal Labs % | £ WelcometoVirtual Labs % | () Virtwal Labs % (5 virtual Labs x @ (@26 Whatshpp x | + - o x

<« @ =5 cse02-iiith viabs acin/exp/basic-control-flow/simulation html N - ¢ in} Q@ :

- 2 virtual .
- = Basic Control Flow Repo

Bug

ul Tnitialize Ei] Step Execution [mm} Code Output

void main() {

x1 =075 yl =078 ntflag 1. flag 2, flag 3, flag_4:
flag 3= flag 4= 0,
x2=275; y2=075:
X 150 (x1, ¥1) (x2, y2)
¥ 150
oy
" flag =1
MNext i flag | && flag 7 && flag 3 && flag 4)
Loeal Variable , prizmf (“INSIDE")
else

! primtf { “OUTSIDE"): | . (x4, y4) (x3, J:’3J .

x=150 y=150 3

~ G virtuallab for database m= X | % Virtual Labs x

£ Welcome to Virtual Labs % | () Virtwal Labs % (5 virual Labs x @ (@26 Whatshpp x | + - o x

« c 23 cse02-iiith.vlabs acin/exp/basic-control-flow/simulation html

a % O 0
(f.]wmm

- = Basic Control Flow

ul Initialize D Step Execution [} Code Output

void main() {

2 3, flag 4
flag 3= flag 4= 0;

X 150 (x1, y1) (x2, y2)
¥ 150
o (%Y
flag_d=1

{F(flag | &k flag 2 &k flag 3 & flag 4)

" priaf (“INSIDE"),

else

 printf ("OUTSIDE"); (x4, y4) (x3,y3)

H P Type here to search

v G virtuallab for database m= X | A Virtual Labs *

4 Welcome to Virtual Labs x 4 Virtual Labs x

& wirtual Labs X ™ (226) WhatsApp x |+ - =] x

c 23 cse02-iiith.vlabs acin/exp/basic-control-flow/simulation html

a % 0O @

Basic Control Flow

j\ﬁrluu\

ul Initialize | Step Execution] Code Output
void main() {

¥l i flag 1, flag_2, flag_3, flag_4:

., flag 1= fMlag 2 = flag_3 = flag 4 = 0;
y2 if (X>=x1)
3325 (
y fiag_1=1;
y4 =325, }
(X emx2)
q { x1, y1, %2, y2|
x 150 fag (x1, y1) (2, y2)
]
v 150 F(Y>=y1)
y = o (xy)
Y
{
flag_4=1
:fl flag | && flag 2 && flag 3 && flag 4)
Local Variable , peianf (TINSIDE")
else
flag 1=0 flag 2=0 [| 3
flag_3=0 flag 4=0 printf { “OUTSIDE"): (x4, y4) (x3, y3)
x=150 y=150 y

H P Type here to search

v G virtual lab for database mansg- X% Virtual Labs * Virtual Labs x o+ - a X

« 2> C 23 cse02-iiithviabs.acin/exp,

Virtual
= @ e

Computer Science and Engineering > > Experiments

Aim .
Functions
Theory
Objective Writing large programs effectively requires decomposition of the code into several independent modules. This makes the program easier to maintain and edit. This

is done by taking the problem and breaking it into small, managable pieces. A function is a portion of code within a larger program that performs a specific task and
Pretest is relatively independent of the remaining code. This helps in decomposition of the code into smaller independent modules. The task performed by a function can
be summarised as taking as input a set of variables and returning a value after doing computation with these values. The value of the input variables may also be

Procedure updated during the computation. Since the functions are written independent of the main code, the same function can be called from the main program with

Simulation different input variables. The allows reuse of the code and hence shortening of the code

Posttest An example of a function. say you are making a program that calculates sales tax and returns the total payable amount The function would ask for a subtotal(s_total)
and the tax percentage(p! as arguments, then take that s_total and multiply it by p/100 to calculate the sales tax(s_tax). After this, the function would calculate the

References total payable amount by adding sales tax(s_tax} and sub totalis_total) and return it to the main program. This function can be called many times from the main

Feedback program for different customers by proving thier sub total and sales tax to be applied

Community Links Follow

at
g .nnm

() 1 NIFTY

v G virtual lab for database mansg- X% Virtual Labs * Virtual Labs x o+ - a X
« c 23 cse02-iiithvlabs acin/exp/functions/simulation html

- (| Virtual
= - Functions

ul Initialize D Step Execution J Code Output

W

nction calls in
he area of the

appropria
n fo comy

5. Press exceute to exeeute the code and see
the output

H P Type here to search

v G virtual lab for database manag: X A Virtual Labs. ® (&) Virtual Labs x o+ - =] x

<« c

cse02-iiith viabs. ac.in/exp/functions/simulation htm|

_ uwmm Functions

Initialize EI Step Execution [Code Output

1. Enter mumber of arguments

2. Enter datatype of arguments

int
float

3. Enter return datatype of the finction

int
float

4. Choose formula for area of the rectangle

a*a

H P Type here to search

v G virtual lab for database manag: X A Virtual Labs. ® (&) Virtual Labs x o+ - =] x
€« c cse02-iiith.vlabs.ac.in/exp/functions/simulation.html
— (45 virual)
= _.J Functions
ul Initialize | Step Execution] Code Output

1. Enter mumber of arguments

2, Enter datatype of arguments

int
float

3. Enter return datatype of the finction

int
float

4. Choose formula for area of the rectangle

G virtual lab for database manag: X

c

(j\ﬁrluu\

% Virtual Labs

cse02-iiith viabs. ac.in/exp/functions/simulation htm|

£ Virtual Labs x 4+

Functions

= a x

a % 0O @

Initialize

1. Click on the square to define a function for
calenlating the area of a square.

2. Similarly define fanctions for the other
acometrical figures.

3. The defined functions are shown in the
middle window.

4. Now make appropriate function calls in
the main program fo compute the area of the
figure display

5. Press execute to execute the code and see
the output.

Step Execution

float area_rect (float a,float b)

float area = a*b;
return area;

Code Output

